Periodic Solutions of Birkhoff–lewis Type for the Nonlinear Wave Equation
نویسندگان
چکیده
We prove the existence of infinitely many periodic solutions accumulating to zero for the one–dimensional nonlinear wave equation (vibrating string equation). The periods accumulate to zero and are both rational and irrational multiples of the string length. 1. A Poincaré conjecture. The wave equation is an infinite dimensional hamiltonian system. The importance of periodic solutions for finite dimensional hamiltonian system was pointed out by Poincaré in [18]: “D’ailleurs, ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour ainsi dire, la seule brèche par où nous puissons essayer de pénétrer dans une place jusqu’ici réputée inabordable.” Although periodic solutions are “few” “en effet, il ya une probabilité nulle pour que les conditions initiales du mouvement soient précisément celles qui correspondent à une solutions périodique,” however Poincaré stressed their importance formulating the following conjecture: “...voici un fait que je n’ai pu démontrer rigoureusement, mais qui me parait pourtant très vraisemblable. Étant données des équations de la forme définie dans le n. 13 et une solution particulière quelconque de ces équations, one peut toujours trouver une solution périodique (dont la période peut, il est vrai, être très longue), telle que la différence entre les deux solutions soit aussi petite qu’on le veut, pendant un temps aussi long qu’on le veut.” This conjecture stimulates the systematic study of periodic solutions by Poincaré himself, Lyapunov, Birkhoff, Moser, Weinstein etc. In [19] a positive answer to the conjecture was given, but only in a generic sense (namely in the C–category of hamiltonian functions): the periodic orbits are dense on every compact and regular energy surface. On the other hand, for specific systems, the conjecture is still open (and far from being proved). As an intermediate step, one can look for periodic orbits accumulating onto invariant manifolds. Indeed it was proved that periodic orbits accumulate onto: 1. elliptic periodic orbits, by Birkhoff and Lewis in the thirties, see [10]; 2. maximal KAM tori, by Conley and Zehnder in the eighties, see [12]; 3. elliptic tori of every dimension, recently in [6]. 2000 Mathematics Subject Classification. Primary: 34C25, 35L05; Secondary: 37K50.
منابع مشابه
A Birkhoff–Lewis type theorem for the nonlinear wave equation
We give an extension of the celebrated Birkhoff–Lewis theorem to the nonlinear wave equation. Accordingly we find infinitely many periodic orbits with longer and longer minimal periods accumulating at the origin, which is an elliptic equilibrium of the associated infinite dimensional Hamiltonian system.
متن کاملPeriodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملThe extended homogeneous balance method and exact solutions of the Maccari system
The extended homogeneous balance method is used to construct exact traveling wave solutions of the Maccari system, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation. Many exact traveling wave solutions of the Maccari system equation are successfully obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007